Clustered Regularly Interspaced Short Palindromic Repeats

CRISPR Technology: From Procaryotic Origins to Eukaryotic Applications

AN OVERVIEW OF CRISPR'S JOURNEY IN GENETIC ENGINEERING

Leathem Mehaffey

Scientists Find Form of Crispr Gene Editing With New Capabilities

A common bacterium contains molecules that target RNA, not DNA. If it can be harnessed for use in humans, the process may lead to new forms of bioengineering.

Gene Editing Spurs Hope for Transplanting Pig Organs Into

<u>Human</u>

Geneticists have created piglets free of retroviruses, an important step toward creating a new supply of organs for transplant patients.

Scientists Can Design 'Better' Babies. Should They?

Advances in reproductive technology have put genetic choices within reach of prospective parents. But critics warn of ethical peril.

CRISPR in the News: **The New Hork Times**

SCIEN

<u>cientists Find Form of Crispr Gene Editing With New Capabilities</u>

A common bacterium contains molecules that target RNA, not DNA. If it can be harnessed for use in humans, the process may lead to new forms of bioengineering

As D.I.Y. Gene Editing Gains Popularity, 'Someone Is Going to

<u>Get Hurt'</u>

une 3, 2016

After a virus was created from mail-order DNA, scientists are sounding the alarm about the genetic tinkering carried out in garages and living rooms.

<u> Scientists Can Design 'Better' Babies. Should They?</u>

Advances in reproductive technology have put genetic choices within reach of prospective parents. But critics warn of ethical peril.

une 10

The CRISPR timeline: from discovery to genome editing and beyond Descovery of CRISPRs in M Adversedance CRISPR-Case! Hiljackeit as genome editing tool CRISPRs in E. coli Discovery of adventuality role of CRISPRs

The CRISPR-CAS 9 System: Early Applications in Eukaryotes and a Patent Dispute

HRQ

CRISPR/CAS 9 Genome Editing Kits

OriGene's system for genome disruption and gene replacement delivers pre-designed plasmids and all the vectors needed to knock out any human or mouse gene. Knockout is as simple as 1-2-3:

Search the gene symbol on origene.com and order

Callow the simple protocol for transfection and Puro selection

Validate the knockout

Kit Components Include: • 2 guide RNA vectors to ensure efficient cleavage • Donor vector with predesigned homologous arm • Knockin GFP-Puro for selection • Scrambie GRNA as needity control included

Knock Out

Any Gene!

Come to OriGene, the trusted molecular biology expert, for your CRISPR needs.

ORIGENE

www.origene.com/CRISPR-c

SO: HOW DOES CRISPR WORK??

First, a primer on DNA

What's the takeaway from this??

Base pairing in DNA is unique:

- Adenine always bonds to Thymine
- Guanine always bonds to Cytosine
- Genes are sequences of DNA. The code in a gene lies in the sequence of base pairs.
- So, if you know the sequence in a gene or even a part of the sequence, you can design a "probe" with complementary bases which will seek out that gene in the nucleus.
 - This is the basis of PCR and other molecular techniques such as ancestry tracing.
 - ▶ It is also the basis of CRISPR.

CRISPR In Prokaryote Cells

- Viruses act by inserting their nuclear (genetic) material (DNA or RNA) into the cell.
- The viral genetic material takes over the protein and nucleic acid synthetic machinery of the cell to make more viruses.
- Eventually the new viruses erupt from the cell, destroying it, and go on to infect other cells.
- Viruses that attack bacterial cells are called bacteriophages.
- CRISPR is based on the bacterial cell's "immune" or defensive system to protect against viruses (or allospecific plasmids).

How CRISPR works in prokaryotes

Role of the PAM*

Cas9 will not cleave the protospacer sequence unless there is a PAM sequence adjacent to the site on the bacterial or viral DNA. The spacer in the bacteria's own CRISPR loci does not contain a PAM sequence and will thus <u>not</u> be cut by the nuclease. But the protospacer in the invading virus or plasmid <u>does</u> contain the PAM sequence and will thus be cleaved by the Cas9 nuclease.

*Protospacer Adjacent Motif

CRISPR in action

Taking advantage of CRISPR system:

